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Introduction
Focus on (reducing) uncertainties on sets

Settings
From GP-based optimization to set estimation

Preamble

While statistics is increasingly employed to address societal needs, there is a
number in situations where data (un)availibility is a potential bottleneck:

Environmental hazards, especially in a climate change context

Safety of industrial installations such as power plants

Personalized/precision medecine

Exploration of natural resources, surveys, etc.

It is not always that the absolute amount of data is moderate, but rather that
useful data for the question at hand is rare, expensive, confidential. . .
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Preamble

Numerical simulations (also known as “Computer Experiments”) are more
and more used to cope with the lack of observational data. Yet they also
come with issues as accurate simulations can be quite resource-intensive!

Models inherited from spatial statistics turn out to be of great use in
uncertainty quantification to deal with both observational and simulation data.

In particular, the former offer a neat framework for the definition of sequential
design strategies for “uncertainty reduction”, or, in other words, data
acquisition policies dedicated to address specific research questions.
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Settings
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2 Focus on (reducing) uncertainties on sets
Introduction to Sequential Uncertainty Reduction strategies
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Set up of main contributions presented next

We investigate i) a complex system represented by a deterministic function
f : x ∈ E 7→ f (x) ∈ F , ii) and/or quantities relying on f , based on a
limited number of evaluations of f .

Two typical examples

Safety engineering: x is a vector parametrizing some system and f
returns an indicator of dangerousness. It is then crucial to understand
which x’s lead to “high” values of f (x).

Flow dynamics: x stands e.g. for the medium, boundary conditions, etc.
and f returns the evolution of a fluid and/or a measure of discrepancy
between simulation results and given observation results.
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Function approximation by means of GP models

Typical situation : f was evaluated at a set of “points” x1, . . . , xn ∈ D ⊂ E and
one wishes to estimate a quantity relying on f and/or perform new
evaluations in order to improve this estimation.

⇒ legitimate to rely on some approximation(s) of f knowing
f (xi) + ϵi (1 ≤ i ≤ n). A number of approaches do exist. . .

Principles of the Gaussian Process approach (GP): suppose that, a priori, f is
a realization of a GP (Z (x))x∈D and approximate f and/or the quantities of
interest via the conditional distribution of Z knowing Z (xi) + εi = f (xi) + ϵi .

⇒ very practical for sequential design of experiments.
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Example inverse problem in hydrogeology
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A costly full factorial experimental design!
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Application of GP-based optimization
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The previous example was produced in the framework of a collaboration with
G. Pirot (University of Lausanne), T. Krityakierne (now at Mahidol University,
Bangkok) and P. Renard (University of Neuchâtel).

⇒ See recently published Hydrol. Earth Syst. Sci. paper (2019).

Main focus in most of the following

In a related set-up, how to estimate parameter regions where f takes target
values using such models and dedicated sequential design strategies?

As a transition, let us review a few selected seminal references about GP
modelling and GP-based “Bayesian Optimization”.

ginsbourger@stat.unibe.ch Quantifying & reducing uncertainties on sets 11 / 41
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A few references on GP modelling . . .

A. O’Hagan (1978).

Curve fitting and optimal design for prediction.
Journal of the Royal Statistical Society, Series B, 40(1):1-42.

J. Sacks, W.J. Welch, T.J. Mitchell, and H. P. Wynn (1989).

Design and Analysis of Computer Experiments
Statist. Sci. 4(4), 409-423.

H. Omre and K. Halvorsen (1989).

The bayesian bridge between simple and universal kriging.
Mathematical Geology, 22 (7):767-786.

M. S. Handcock and M. L. Stein (1993).

A bayesian analysis of kriging.
Technometrics, 35(4):403-410.

A.W. Van der Vaart and J. H. Van Zanten (2008).

Rates of contraction of posterior distributions based on Gaussian process priors.
Annals of Statistics, 36:1435-1463.

ginsbourger@stat.unibe.ch Quantifying & reducing uncertainties on sets 12 / 41



Introduction
Focus on (reducing) uncertainties on sets

Settings
From GP-based optimization to set estimation

. . . and on GP-based Optimization
H.J. Kushner (1964).

A new method of locating the maximum of an arbitrary multi-peak curve in the presence of noise.
Journal of Basic Engineering, 86:97-106.

J. Mockus (1972).

On Bayesian methods for seeking the extremum.
Automatics and Computers (Avtomatika i Vychislitel’naya Tekhnika), 4(1):53-62.

J. Mockus, V. Tiesis, and A. Zilinskas (1978).

The application of Bayesian methods for seeking the extremum.
In Dixon, L. C. W. and Szegö, G. P., editors, Towards Global Optimisation, volume 2, pages 117-129. Elsevier
Science Ltd., North Holland, Amsterdam.

J.M. Calvin (1997).

Average performance of a class of adaptive algorithms for global optimization.
The Annals of Applied Probability, 7(3):711-730.

M. Schonlau, W.J. Welch and D.R. Jones (1998).

Efficient Global Optimization of Expensive Black-box Functions.
Journal of Global Optimization.
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Our main topic today: background and motivations

A number of practical problems boil down to determining sets of the form

Γ ⋆ = {x ∈ D : f (x) ∈ T} = f−1(T )

where f : D −→ Rk (k ≥ 1), D ⊂ Rd (d ≥ 1), and T ⊂ Rk .

Examples

Contour lines

Excursion/sojourn sets above/below thresholds

Admissible regions in constrained optimization

High gradient/high curvature regions, etc.

(Pareto sets in multi-objective optimization. . . but then T depends on f !)

ginsbourger@stat.unibe.ch Quantifying & reducing uncertainties on sets 15 / 41



Introduction
Focus on (reducing) uncertainties on sets

Settings
From GP-based optimization to set estimation

Our main topic today: background and motivations

A number of practical problems boil down to determining sets of the form

Γ ⋆ = {x ∈ D : f (x) ∈ T} = f−1(T )

where f : D −→ Rk (k ≥ 1), D ⊂ Rd (d ≥ 1), and T ⊂ Rk .

Examples

Contour lines

Excursion/sojourn sets above/below thresholds

Admissible regions in constrained optimization

High gradient/high curvature regions, etc.

(Pareto sets in multi-objective optimization. . . but then T depends on f !)

ginsbourger@stat.unibe.ch Quantifying & reducing uncertainties on sets 15 / 41



Introduction
Focus on (reducing) uncertainties on sets

Settings
From GP-based optimization to set estimation

Background and motivations

We essentially focus today on the case where k = 1, D is compact, f is
continuous, and T = [t ,+∞) or (−∞, t ] for some prescribed t ∈ R.

Γ ⋆ = {x ∈ D : f (x) ≥ t} is then referred to as the excursion set of f above t .

Our aim is to estimate Γ ⋆ and quantify uncertainty on it when f can solely be
evaluated at a few points, both in static and sequential cases.
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Test case from safety engineering

Figure: Excursion set (light gray) of a nuclear criticality safety coefficient depending
on two design parameters. Blue triangles: initial experiments.

C. Chevalier (2013).
Fast uncertainty reduction strategies relying on Gaussian process models.
Ph.D. thesis, University of Bern.

ginsbourger@stat.unibe.ch Quantifying & reducing uncertainties on sets 17 / 41



Introduction
Focus on (reducing) uncertainties on sets

Settings
From GP-based optimization to set estimation

Making a sensible estimation of Γ ⋆ based on a drastically limited number of
evaluations f (Xn) = (f (x1), . . . , f (xn))

′ calls for additional assumptions on f .

As before, we consider the Bayesian framework where a Gaussian Process
(GP) prior is put on f , i.e. f is seen as one realization of a GP (Z (x))x∈D

(characterized in distribution by a mean m and a covariance kernel k ).

In the GP set-up, the main object of interest is represented by

Γ = {x ∈ D : Z (x) ∈ T} = Z−1(T )

Under our previous assumptions on T and assuming that is chosen Z with
continuous paths, Γ is a Random Closed Set (See thesis below for detail).

D. Azzimonti (2016).
Contributions to Bayesian set estimation relying on random field priors.
Ph.D. thesis, University of Bern.
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Simulating excursion sets under a GRF model
Posterior simulations on a 50 × 50 grid of Z and Γ knowing Z (Xn) = f (Xn).
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How to quantify the uncertainty on Γ?
There are many ways to quantify uncertainties on sets!

This will be one of the recurring questions throughout the talk, but we will not
be exhaustive by far. For more detail see, e.g.,

I. Molchanov (2005)
Theory of Random Sets.
Springer.

D. Azzimonti, J. Bect, C. Chevalier and D. Ginsbourger (2016).
Quantifying uncertainties on excursion sets under a Gaussian random field prior.
SIAM/ASA Journal on Uncertainty Quantification.

Before moving to random set-related concepts, a first spontaneous idea is to
“scalarize” the problem, for instance by looking at Γ’s volume. Let us make a
detour through some GP basics in order to do so.
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Kriging (Gaussian Process Interpolation)

{
mn(x) = m(x) + k(Xn, x)T k(Xn,Xn)

−1(f (Xn)− m(Xn))

s2
n(x) = k(x, x)− k(Xn, x)T k(Xn,Xn)

−1k(Xn, x)
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From Ln(Z (x)) = N (mn(x), s2
n(x)), the “coverage probability” of Γ (or

conditional/posterior probability of excursion, here) can be expanded as

pn(x) = Pn(x ∈ Γ ) = Pn(Z (x) ≥ t) = Φ
(

mn(x)−t
sn(x)

)
ginsbourger@stat.unibe.ch Quantifying & reducing uncertainties on sets 22 / 41
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Towards conservative excursion set estimation

From pn to moments of Γ’s volume
Denote by µ a finite measure on (D,B(D)) [one can think here of µ as Vol]
and set α∗ = µ(Γ∗), i.e. the “volume of excursion” in the considered case.

The GP model leads to a random analogue α = µ(Γ), and by Robbins’
theorem, the posterior expectation of α can be written in terms of pn:

En[µ(Γ)] = En

[∫
D

1Γ(u)dµ(u)
]
=

∫
D

pn(u)dµ(u)

However, the (posterior) distribution of α has been considered analytically
intractable.

R.J. Adler (2000)
On excursion sets, tube formulas and maxima of random fields.
Annals of Applied Probability, 10(1):1-74.

E. Vazquez and M. Piera Martinez (2006).
Estimation of the volume of an excursion set of a Gaussian process using
intrinsic Kriging.
arXiv:math/0611273 [math.ST].
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About conditional moments of α

Fortunately, as already pointed out in Molchanov 2005 in more general
settings, En[α

r ] can also be worked out for r ≥ 2), at the price of calculating
integrals. In our framework, we have indeed:

En[α
r ] = En

[(∫
D

1Γ(u)dµ(u)
)r]

= En

[(∫
D

1Γ(u1)dµ(u1)

)
. . .

(∫
D

1Γ(ur )dµ(ur )

)]
=

∫
D
· · ·
∫

D
En [1Γ(u1) . . . 1Γ(ur )] dµ(u1) . . . dµ(ur )

=

∫
D
· · ·
∫

D
Pn(Z (u1) ≥ t , . . . ,Z (ur ) ≥ t)dµ(u1) . . . dµ(ur )

Hence, recalling the GP assumption, En[α
r ] writes as an r -dimensional

integral which integrand involves a r -dimensional Gaussian CDF.
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A useful bound for the case r = 2
In what follows, the case r = 2 will be of special importance as we will
consider sequential design strategies aiming at reducing Varn[α].

The following underlined quantity, that is easier to compute and also comes
with a nice interpretation, has been used as well:

Varn[α] = En

[(∫
D
(1Γ(u)− pn(u))dµ(u)

)2
]

≤ µ(D)2En

[∫
D
(1Γ(u)− pn(u))2dµ(u)

]
= µ(D)2

∫
D

pn(u)(1 − pn(u))dµ(u)︸ ︷︷ ︸
Integrated indicator variance

The excursion volume’s variance and the integrated indicator variance are
used as two particular “measures of uncertainty” in what follows.
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Towards Stepwise Uncertainty Reduction strategies
Let us informally consider the following 1-step-lookahead scheme:

For some chosen (say, non-negative) functional defined on GP
distributions, define the uncertainty at time n ≥ 0, Hn, as this functional
applied to the current posterior GP (E.g., Hn = varn(α)).

Starting from some intial design {x1, . . . , xn0}, at each iteration n ≥ n0,
evaluate f at a point x⋆

n+1 minimizing the so-called SUR criterion
associated with the chosen notion of uncertainty:

Jn(xn+1) := En(Hn+1(xn+1))

See notably the following paper and seminal references therein:

J. Bect, D. Ginsbourger, L. Li, V. Picheny and E. Vazquez.
Sequential design of computer experiments for the estimation of a probability of
failure.
Statistics and Computing, 22(3):773-793, 2012.
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SUR strategies: Two candidate uncertainties

Two possible definitions for the uncertainty Hn are considered below:

Hn :=V arn(α)

H̃n :=

∫
D

pn(1 − pn)dµ

Uncertainties:

Hn :=V arn(α)

H̃n :=

∫
X

pn(1 − pn)dµ

SUR criteria:

Jn(x) :=En(V arn+1(α))

J̃n(x) :=En

(∫
D

pn+1(1 − pn+1)dµ
)

Main challenge to calculate J̃n(x) (similar for Jn(x)): Obtain a closed form
expression for En (pn+1(1 − pn+1)) and integrate it.
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Deriving SUR criteria
Proposition

En(pn+1(x)(1 − pn+1(x))) = Φ2

((
a(x)
−a(x)

)
,

(
c(x) 1 − c(x)

1 − c(x) c(x)

))

• Φ2(·,M): c.d.f. of centred bivariate Gaussian with covariance matrix M

• a(x) := (mn(x)− t)/sn+1(x),

• c(x) := s2
n(x)/s2

n+1(x)

C. Chevalier, J. Bect, D. Ginsbourger, V. Picheny, E. Vazquez and Y. Richet.
Fast parallel kriging-based stepwise uncertainty reduction with application to the
identification of an excursion set.
Technometrics, 56(4):455-465, 2014.

C. Chevalier, V. Picheny and D. Ginsbourger.
The KrigInv package: An efficient and user-friendly R implementation of
Kriging-based inversion algorithms.
Computational Statistics & Data Analysis, 71:1021-1034, 2014
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Back to the test case with SUR
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Batch-sequential SUR strategies

Figure: 3 SUR iterations (J̃n criterion with q = 4)
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About the consistency

J. Bect, F. Bachoc and D. Ginsbourger (2019).
A supermartingale approach to Gaussian process based sequential design of
experiments.
Bernoulli 25 (4A), 2883-2919.
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Further questions about SUR and UQ on sets

Of course, in operational conditions, asymptotic results are worthwhile.
However, concrete finite-sample outputs such as estimates of Γ⋆ and
quantifications of the associated uncertainty are required as well.

Now, n being fixed, how to estimate Γ⋆ and to assess/represent the variability
of the corresponding estimate(s)?
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Outline

1 Introduction
Settings
From GP-based optimization to set estimation

2 Focus on (reducing) uncertainties on sets
Introduction to Sequential Uncertainty Reduction strategies
Towards conservative excursion set estimation
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How to summarize the posterior distribution of sets?
For application purposes, let us reverse the perspective and focus on the
sojourn/excursion case below t , where Γ = {x ∈ D : Z (x) ≤ t} [say a “safe
set”] and pn : x ∈ D → pn(x) = Pn(Z (x) ≤ t).

Define the (conditional) quantiles of Γ as
ρ−level sets of pn:

Qρ : = {x ∈ D : pn(x) ≥ ρ}
= {x ∈ D : Pn(Z (x) ≤ t) ≥ ρ}.

How well Qρ estimates Γ can be quantified for
instance through the “expected deviation”:

En (µ(Qρ∆Γ))
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Estimates of Γ ⋆: the Vorob’ev expectation

The Vorob’ev expectation of
Γ | (Z (x1) = f (x1), . . . ,Z (xn) = f (xn)) is
the ρ⋆ level set of pn such that

µ(Qρ⋆) = En[µ(Γ )].

It is a state of the art result that Qρ⋆

minimizes S → En (µ(S∆Γ)) among all
closed sets S ⊂ Rd with volume En[µ(Γ )].

C. Chevalier, D. Ginsbourger, J. Bect, and Molchanov, I.
Estimating and quantifying uncertainties on level sets using the Vorob’ev
expectation and deviation with Gaussian process models.
mODa 10 Advances in Model-Oriented Design and Analysis, Physica-Verlag HD,
2013.
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Estimates of Γ ⋆: some limitations of Qρ quantiles

In practice one often wish to give confidence statements on the estimates.

Qρ contains points which have marginal
probability at least ρ of being in Γ .

⇒ no confidence statement on the
probability of the actual excursion set
containing this specific estimate.

E.g., the probabilities of Qρ containing the
excursion set (computed on a grid) are

0.67 for ρ = 0.95

0.009 for ρ = 0.5

0.019 for ρ = 0.56 (Vorob’ev)
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Conservative Estimates of Γ ⋆

We denote by conservative estimate for
Γ | (Z (x1) = f (x1), . . . ,Z (xn) = f (xn)) at level β the largest Qρ such that
Pn(Qρ ⊂ Γ) ≥ β:

Et,α = argmax
Qρ

{µ(Qρ) : Pn(Qρ ⊂ Γ) ≥ β}

D. Bolin, F. Lindgren.
Excursion and contour uncertainty regions for latent Gaussian models.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2014.

Such conservative estimate Et,β is hence

the largest quantile such that, with probability β, the response is below
the threshold simultaneously at each of its locations.

based on a confidence statement on the whole set
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Computing conservative estimates

The computation of a conservative estimate

Et,β = argmax
Qρ

{µ(Qρ) : Pn(Qρ ⊂ Γ) ≥ β}

presents two (nested) computational bottlenecks:
1 find the set with the maximum volume;
2 compute Pn(Qρ ⊂ Γ).

For recent work on computing the last term, see for instance

D. Azzimonti and D. Ginsbourger (2018).
Estimating orthant probabilities of high dimensional Gaussian vectors with an
application to set estimation.
Journal of Computational and Graphical Statistics, 27:2, 255-267
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Computing Pn(Qρ ⊂ Γ)

If Qρ is discretized over a grid W = {w1, . . . ,wm}, then

Pn(Qρ ⊂ Γ) = Pn(Z (w1) ≤ t , . . . ,Z (wm) ≤ t) = 1 − Pn

(
max

i=1,...,m
Z (wi) > t

)

There exists a number of algorithms to estimate
Pn(Z (w1) ≤ t , . . . ,Z (wm) ≤ t):

1 quasi-MC integration techniques
very fast and reliable in small dimensions;
hardly usable for dimensions higher than 1000.

2 pure MC techniques:
dimension independent;
high number of simulations for small variance.

IRSN test case

an estimate with a good resolution requires an 100 × 100 grid for D;

W consists of +1000 grid points for some Qρ.
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Pn(maxw∈W Zw > T ): proposed hybrid algorithm

Algorithm:
1 select q grid points, denoted Wq ⊂ W ;

2 compute p′ = P(maxw∈Wq Zw > t) with qMC quadrature;

3 estimate Pn(maxw∈W Zw > t) with

p̂ = p′ + (1 − p′)R̂q

where R̂q is a MC estimator of

Rq = Pn

(
max

w∈W\Wq
Zw > t

∣∣∣ max
w∈Wq

Zw ≤ t
)

An asymmetric nested Monte Carlo scheme was developed for improved
efficiency in Rq ’s estimation. (See ”orthant” paper and anMC R package).
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Back to the test case with a conservative estimate. . .

NB: here, ρ = 99.88829% for a confidence of 99.12178%.
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. . . and associated sequential strategies
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For more on sequential conservative estimation

D. Azzimonti, D. Ginsbourger, C. Chevalier, J. Bect, Y. Richet (2021).
Adaptive Design of Experiments for Conservative Estimation of Excursion Sets.
Technometrics, 63:1, 13-26.

Acknowledgements:

Drs Yann Richet and Grégory Caplin (French Nuclear Safety Institute) for
providing the criticality safety test case.

Special thanks to Drs. Dario Azzimonti and Clément Chevalier for numerous
invaluable inputs, and more generally, to all co-authors involved.
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Computation of the remainder

Rq = Pn(maxx∈E\Eq Z (x) > t | maxx∈Eq Z (x) ≤ t)

Standard Monte Carlo:
1 draw realizations zq

1 , . . . , z
q
s from Z (Eq) | maxx∈Eq Z (x) ≤ t ;

2 for each zq
i , draw a realization from Z (E \ Eq) | Z (Eq) = zq

i ;

3 Estimate Rq with RMC
q = 1

s

∑s
i=1 1max(Z (E\Eq)(ωi )|Z (Eq)=zq

i )>t

The cost of step 1 is higher than the cost of step 2.

At fixed computational budget we reduce the variance of RMC
q exploiting this

difference with asymmetric nested Monte Carlo.
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Computation of the remainder

At fixed computational budget we reduce the variance of RMC
q drawing

many realizations of Z (E \ Eq) | Z (Eq) = zq
i for each zi .

-1 0 1 2ZEq

Z
E
−
E
q

0
1

2
3

4
5

Standard marginal/conditional scheme
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Computation of the remainder

At fixed computational budget we reduce the variance of RMC
q drawing

many realizations of Z (E \ Eq) | Z (Eq) = zq
i for each zi .

-1 0 1 2ZEq

Z
E
−
E
q

0
1

2
3

4
5

Asymmetric sampling scheme
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Computation of the remainder: asymmetric nested MC
Rq = Pn(maxx∈E\Eq Z (x) > t | maxx∈Eq Z (x) ≤ t)

1 draw realizations zq
1 , . . . , z

q
s from Z (Eq) | max∈∈Eq Z (x) ≤ t ;

2 for each zq
i , draw m∗ > 1 samples from Z (E \ Eq) | Z (Eq) = zq

i ;

3 RanMC
q = 1

s
1

m∗
∑s

i=1

∑m∗

j=1 1max(Z (E\Eq ;ωi,j )|Z (Eq)=zq
i )>t

V ar(RanMC
q ) is optimally reduced if: m∗ =

√
(α+c)B
β(A−B)

,

where A = V ar(1max(Z (E\Eq)|Z (Eq))>t ),
B = E

[
V ar(1max(Z (E\Eq)|Z (Eq))>t | maxx∈Eq Z (x) ≤ t)

]
and α, β, c system dependent

constants.

Azzimonti, D. and Ginsbourger D. (2018). Estimating orthant probabilities of high
dimensional Gaussian vectors with an application to set estimation. Journal of
Computational and Graphical Statistics 27:2, 255-267.
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Properties of the anMC estimator

For each realization wi we sample m realizations yi,1, . . . , yi,m from
Y | w = Wi , leading to a realization 1

nm

∑n
i=1

∑m
j=1 g(wi , yi,j) of the estimator

G̃ =
1

nm

n∑
i=1

m∑
j=1

g(Wi ,Yi,j).

Proposition

Consider n independent copies W1, . . . ,Wn of W and, for each Wi , m copies
Yi,j = Yj | Wi j = 1, . . . ,m, independent conditionally on Wi . Then,

V ar(G̃) =
1
n
V ar(g(W1,Y1,1))−

m − 1
nm

E
[
V ar(g(W1,Y1,1) | W1)

]
.
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Optimality for anMC

Under the same assumptions, G̃ has minimal variance when

m = m̃ =

√
(α+ c)B
β(A − B)

,

where A = V ar(g(W1,Y1,1)) and B = E
[
V ar(g(W1,Y1,1) | W1)

]
. Moreover

denote with ε = m̃ − ⌊m̃⌋, then the optimal integer is m∗ = ⌊m̃⌋ if

ε <
(2m̃ + 1)−

√
4(m̃)2 + 1

2

or m∗ = ⌈m̃⌉ otherwise.

If m∗ > 2(α+c)B
(c+α)B+β(A−B)

then V ar(G̃) = V ar(Ĝ) [1 − η], with η ∈ (0, 1), where

Ĝ is the standard MC estimator.
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Comparison GanMC/GMC with state-of-the-art
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Benchmark: 6d GRF, discretization: 1000 Sobol’ points, k Matérn
(ν = 5/2) with θ = [0.5,0.5,1,1,0.5,0.5]T and σ2 = 8, m constant,
t = 5.
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More comparisons anMC/MC
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Benchmark: 6d GRF, discretization: 1000 Sobol’ points, k Matérn
(ν = 5/2) with θ = [0.5,0.5,1,1,0.5,0.5]T and σ2 = 8, m constant.

ginsbourger@stat.unibe.ch Quantifying & reducing uncertainties on sets



Miscellaneous
Complements on Asymmetric Nested Monte Carlo
Around profile extrema for excursion set visualization
About Vorob’ev quantiles

Choice of m∗
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Efficiency
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Benchmark: 6d GRF with m
constant, k Matérn (ν = 5/2),
θ = [0.5, 0.5, 1, 1, 0.5, 0.5], σ2 = 8.
Discretized over first 1000 points of
Sobol’ sequence.

Quantity of interest:
1 − p = P(X < t), t = 5.

GanMC algorithm with pq fixed, Rq

(anMC) computed for different m.

Median estimated value p̂ = 0.9644,
p̂q = 0.9636.
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Simulation of coastal flooding at “Les Boucholeurs”

Study site location (left) and computational domain limits (right, in white) with
location of the forcing conditions (right, in blue).
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Test case input and output parametrization

(a) Schematic representation of the tide and surge temporal signals and the
different parameters describing them. (b) Maps of inland water height for
given values of the parameters, and deduced value of flood surface.
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Estimated coordinate profile maxima for the 5 inputs
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Key underlying result

Theorem

Consider (Z (x))x∈D ∼ GP(µ,K) and an approximating process of Z , Z̃ ,
defined by Z̃ (x) = a(x) + bT (x)ZG where the a,b functions and
G = {g1, . . . ,gℓ} ⊂ D (ℓ ≥ 1) are given. Then, for T ⊂ D and any u > µ∆̃

T ,

P
(
|sup
x∈T

Z (x)− sup
x∈T

Z̃ (x)| > u
)

≤ 2 exp

(
− (u − µ∆̃

T )
2

2(σ∆̃
T )2

)
, (1)

where

µ∆̃
T = sup

x∈T
|µ∆̃(x)| and (σ∆̃

T )2 = sup
x∈T

K∆̃(x, x) with (2)

µ∆̃(x) = E[Z (x)− Z̃ (x)] = µ(x)− a(x)− bT (x)µ(G)

K∆̃(x, x′) = K(x, x′)− K(x′,G)b(x)− K(x,G)b(x′) + bT (x)K(G,G)b(x′),

If Z̃ − Z is centred then (1) is valid for any u > 0.
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For more detail

More on the profile maxima approach and its application to the BRGM data
can be found in

D. Azzimonti, D. Ginsbourger, J. Rohmer, D. Idier (2019, to appear in
Technometrics)
Profile extrema for visualizing and quantifying uncertainties on excursion regions.
Application to coastal flooding.
https://arxiv.org/abs/1710.00688

For more on random fields and geometry, see in particular

R. J. Adler and J. E. Taylor (2007)
Random Fields and Geometry.
Springer

and references therein.
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Generalized optimality property for Vorob’ev quantiles

Proposition

For any ρ ∈ [0, 1], the Vorob’ev quantile

Qρ = {x ∈ D : pn(x) ≥ ρ}

minimizes the expected distance in measure with Γ among measurable sets
M such that µ(M) = µ(Qρ), i.e.,

En [µ(Qρ∆Γ)] ≤ En [µ(M∆Γ)] ,

for any measurable set M such that µ(M) = µ(Qρ).

A proof of this property is presented in Dario Azzimonti’s PhD thesis (2016).
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