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● Usually, a first climate awareness (and worriness) : extreme events! (eg, last summer)

● More generally, many human activities/interests (agriculture, energy, water resources, etc.) 
are strongly related to weather and climate
(30% of the world economic activities are affected by meteo conditions, source: IPCC)

⇒ Climate changes (both in extremes and more “regular” events) can then have major 
consequences and impacts (food security, damages, biodiversity, etc.)

⇒ From ~60’s: “Global Climate Models” (GCM) to model/understand past/present/future

⇒ From 1988: “Intergovernmental Panel on Climate Change” (IPCC, last report in 2021/22)

Ø Assess knowledge on CC, its causes, potential impacts and response options

● As in any (physical and statistical) modelling: Uncertainties are present
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Uncertainties in “simulations” and in “references”

● Global (GCM) or Regional (RCM) Climate Models
Ø Based on physical equations, computer code(s) simulating the main 

characteristics (pressure, temp., prec., etc.) of the Earth system
Ø Structure of the model / parametrizations / scale

● Statistical downscaling/Bias correction
Ø Links GCM/RCM simulations to reference data
Ø Uncert. sources: Stat./ML approach (linear, non-linear,                

distribution assumptions), choice of the predictors, references

● Observations
Ø Weather stations / satellites /  radar
Ø Uncert. sources: precision measurement

● Reanalyses
Ø Based on “data assimilation” approach
Ø Uncert. sources: GCM used + observation uncertainties

● Note: Climate ≠ Meteo !! (even though, same variables)
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● Time: ~1 week vs. 100 years

● Dynamics: 1 trajectory vs. the “attractor”

● Statistics:
1 realization vs. its random variable

Main thread of various statistical modellings climate variables & evaluations:

What we need is the correct pdf or CDF (or at least properties)

…

…Meteorology ≠ Climate 
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Variabilities, forcings, etc.

Some “wording”:

Ø Climate = Mean state + climate variability

Ø Climate variability = internal variability + external forcings

Ø External forcings = Natural forcings + anthropogenic forcings

Ø Natural variability = Internal variability + Natural forcings



Inter-model variability vs.   Internal variability

Stationary climate: lots of variations anyway!

Data: CNRM-CM5

Many internal variabilities: 
Ø from global and multi-decadal (mostly from the ocean)

Ø to regional and inter-annual (mostly from the atmosphere)

(= mean state + internal variability)
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Inter-model variability vs.   Internal variability

Time
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anomalies) 
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This is a schematic view (i.e., not based on actual simulations)
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Inter-model variability vs.   Internal variability
Global surface temperature change relative to 1850-1900

Ø Multiple runs of GCMs & multiple scenarios
Ø How to quantify the contribution of the different variabilities/uncertainties?

This time, this is based on actual CMIP6 simulations (adapted from AR6 IPCC, 2021)

°C
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Contributions of the different uncertainties…

Source: 
Hawkins 
(2014)

For temperature:
Ø Short term: uncertainty on internal variability is predominant
Ø Medium term: uncertainty on modelling dominates
Ø Long term: uncertainty on scenario is the largest

ANOVA type 
analyses



Source: Figures from E. Hawkins, to find on his blog.

… Different for each variable & region
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A recent tool to characterize contributions
QUALYPSO :  partitioning uncertainty components in an ensemble of climate projections (Evin et al., 2019)

extraction of climate 
responses with a 

cubic spline model

ANOVA applied to climate
change responses: main 

effects, uncertainties

climate change responses 
w.r.t. a reference period

(e.g. 1980-2010)

𝛾#, 𝛾$ and 𝛾% = individual effects of the 3 
RCP scenarios wrt 𝜇 (e.g., 𝛾% => RCP8.5 
implies a T change of +1°C wrt 𝜇)

𝜇 = mean response in change from the whole
ensemble inter-modeles / inter-scenarios

Ø Provides: Uncertainty sources; individual climate response of each model: 
uncertainties as a function of global warming level (e.g. in a +2°C world)

Ø Suits: Incomplete ensembles with multimodel simulation chains (GCM x 
RCM x …) for any kind of projections (weather, hydrology, ecology)

Ø Links: Package R “QUALYPSO” available on CRAN



A recent tool to characterize contributions
QUALYPSO :  partitioning uncertainty components in an ensemble of climate projections (Evin et al., 2019)

Examples for seasonal changes (2071-2099 wrt 1981–2010) of precipitation and temperature in Europe

Temperature Precipitation

Source: Evin et al. (2021, ESD)
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Present in most components of the modelling chain…

Ø Global Climate Models (GCM)

Ø Regional Climate Models (RCM, "Dynamical doswnscaling")
Ø Statistical Downscaling Models (SDM, including Mach. Learning)

Ø Bias Correction (BC) methods
Ø Impact models (hydrology, ecology, economy, etc.)

… & in most processes and/or statistical properties

Ø Precipitation / Wind / (Temperature) /…

Ø Circulation (SLP, Z500, jet, etc.) patterns
Ø Clouds / aerosol / ice / ...

Ø Etc.

Ø Univariate distributions and basic properties

Ø Multivariate dependencies
Ø Temporal properties (persitence, reccurrence, etc.)

Ø Extremes (return levels/period, HW, storms, etc.)

Ø Especially in a climate change context! (trends, non-stationarity, etc.)

For evaluation

For fit & evaluation

+ uncertainties
on references



Thank you…


